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Abstract. Using classical molecular dynamics simulations combined with Voronoı̈ tessellation
we study the geometrical modifications as a function of temperature in two model Frank–Kasper
phases: the A15 structure (β-tungsten) and the cubic Friauf–Laves structure(MgCu2). We show
how the perfect arrangement of disclination lines at 0 K for the crystalline structures evolves
through the melting point. In particular, as the temperature is increased, the results permit us to
identify the first defect and to show that the initial network of disclination lines survives until
the solid–liquid first-order transition has indeed taken place.

1. Introduction

In the past ten years compact tetrahedral phases, called Frank–Kasper phases [1], have
received renewed attention because of their connection with quasicrystalline phases [2] and
also because new phases have been discovered recently [3]. As regards the geometrical
approach, these phases have an additional advantage since they appear as a solution to
frustration [4].

In this study we want to focus on the simplest of these phases, namely the structure
of β-tungsten, also called A15, and the cubic Friauf–Laves structure of MgCu2. These
structures are not only the simplest, but also correspond to the lowest and the highest
coordination numbers in Frank–Kasper structures [4]. These structures are well described
using the major skeleton formed by the Frank–Kasper lines, which are the lines joining
atoms without an icosahedral local order. The A15 structure is an example in which these
lines never intersect, whereas the Friauf–Laves structure is an example in which all Frank–
Kasper lines intersect at the atomic sites. This high degree of icosahedral order is reflected
best in the geometrical characteristics of the Voronoı̈ cells, which are the extensions of the
Wigner–Seitz cells defined for periodic lattice nodes. On the other hand, the evolution of
these lines with temperature has not been investigated or modelled, even though it seems
that a description of this evolution would provide the most efficient way to characterize how
the icosahedral order is affected by temperature, or, in other words, how these Frank–Kasper
phases melt. Therefore, we combined molecular dynamics simulations and the Delaunay–
Voronöı tessellation to follow dynamically the evolution of the geometrical characteristics
of the Voronöı cells as a function of temperature, in order to shed new light on the melting
of Frank–Kasper phases from ageometricalpoint of view.

In section 2 a description of the method and the model structures will be given. We
present and discuss our results in section 3. Finally in section 4 we present our conclusions.
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2. The method and model systems

2.1. The method

We performed molecular dynamics simulations for microcanonical systems of soft spheres
interacting via the inverse-sixth-power potential defined by Laird and Schober [5]:

U(r) = ε
(
σ

r

)6

+ Ar4+ B. (1)

To simplify the simulations, the potential was cut off atr/σ = 3.0, andA andB were
chosen such that the potential and the force are zero at the cut-off.

Our simulations used a rigid cubic box of edge lengthL, with periodic boundary
conditions (PBC) at constant density. To integrate the equations of motion we use the
fourth-order Runge–Kutta algorithm.

This potential has been chosen by analogy with previous work on glasses [6]. It is
an efficient potential, when applied to constant-volume simulation, in order to lead to
glasses after quenching the liquid. Clearly, it is not at all our purpose to simulate true
metallic Frank–Kasper phases, which would need a more sophisticated potential to be in the
thermodynamic ground state. Note here that Frank–Kasper phases are not only encountered
in metallic alloys, but also appear as micellar ordered structures for amphiphilic molecules
in water solutions. They are also related to clathrate structures.

Starting from initial samples at 0 K, the following configurations were obtained by
annealing the samples at an annealing rate of 1012 K s−1, which was achieved by adding
the corresponding amount of energy to the total energy of the system at each iteration.

At several temperatures during this annealing process, the configurations (positions
and velocities) were saved. Each configuration was then used to start a constant-energy
molecular dynamics calculation during which the temperature was recorded as a function of
time. In all cases, we observed a relaxation process typical of such a system [7] during which
a slight increase of the temperature was observed before a saturation regime was instigated.
We found that typically 10 000 iterations were enough to ensure that we obtained a well
defined constant temperature for each sample. After these 10 000 relaxation steps, we started
to calculate the geometrical quantities, which were then monitored during 20 000 additional
steps.

In fact, during these additional steps we combined our molecular dynamics scheme and
the so-called ‘Voronöı–Delaunay tessellation’, which was originally introduced to analyse
random close packings of spheres [8–10]. The Voronoı̈ cell is defined as the ensemble
of points closer to a given atom than to any other, and it is characteristic of the local
environment around the given atom. To obtain it we have used an efficient algorithm
which has been recently introduced to study large random sphere packings [11]. The
first step of this algorithm is to determine the Delaunay tetrahedral simplicial cells for a
given configuration. These cells are—among all of the tetrahedra formed with four atomic
centres—the ones such that no other atomic centre lies inside their circumscribed spheres.
This part is the most computer time demanding, but our algorithm (which takes care of the
PBC) is efficient enough to be included within the molecular dynamics code. As an input,
one has to provide a cut-off distance which should be larger than the longest edge of all of
the simplicial tetrahedra. If this is not case, the basic requirement—namely that the sum
of the volumes of all of the simplicial tetrahedra is equal to the volume of the simulation
box—is not fulfilled, and the algorithm has to be run again with a new and larger cut-off.
Once the simplicial tetrahedra are obtained, the Voronoı̈ cell of a given atom is determined,
in the knowledge that its vertices are the centres of the circumspherical spheres of all of the
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simplicial tetrahedra sharing this atom. During the simulation, we recorded the geometrical
characteristics of these cells; among these were the mean number of faces〈F 〉, also called
the coordination numberz, as well as the fractionsfe of cell faces having a given number
e of edges (e > 3).

2.2. Model systems

2.2.1. A15 structure (β-tungsten). The unit cell of this structure is a cube (length= 1.0)
containing eight atoms. This cube contains a centred icosahedron, with the twelve external
atoms located on the faces of the cube. The vertices of the cube are also occupied. Among
the eight atoms in the primitive cell, two of them have an icosahedral coordination shell
(z = 12) while the others in the cell faces havez = 14. They are usually called Z12 and Z14.
Connecting the non-icosahedral Z14 sites, a triple periodic array of infinite non-intersecting
Frank–Kasper lines threads ‘hexagonal’ faces (see figure 2(a)). Therefore, at 0 K, the perfect
structure has an average coordination number〈z〉 = 13.5, while f5 = 0.89 andf6 = 0.11.

For this structure, simulations were done with 1000 particles, usingσ = 0.5 and
ε/kB = 100 K. The length of the simulation box was taken equal toL = 5.0, and the
mass of the particles was fixed to 50 amu. For the simulation, 5.0 fs was found to be an
adequate time step.

2.2.2. Cubic Friauf–Laves structure (MgCu2). The cubic unit cell (length= 1.0) contains
eight atoms of Mg type with a distancedMg−Mg = 0.43 in a diamond-like structure, and
sixteen atoms of Cu type with a distancedCu−Cu = 0.35 located in the tetrahedral interstices
of the diamond structure. For the latter the coordination shell is a slightly deformed
icosahedron(z = 12), while for the former, it contains 16 vertices(z = 16). They are
usually called Z16. The non-icosahedral Z16 sites can be connected by lines leading to a
Frank–Kasper major skeleton. But in this case there are four segments meeting at a site, so
they form a network similar to that formed by bonds in a diamond structure. Therefore, at
0 K, the perfect structure has an average coordination number〈z〉 = 13.33, whilef5 = 0.9
andf6 = 0.1.

For this structure, simulations were done with 648 particles, usingσCu = 0.28 and
σMg = 0.34. The length of the simulation box was taken equal toL = 3.0, and the time
step was adjusted to 2 fs.

2.3. Frank–Kasper lines as disclinations

It is an attractive method to consider Frank–Kasper structures as crystals of defects [12].
Introducing defects must be done by reference to a perfect order, which in this case is
the icosahedral order: in a Frank–Kasper structure all places where the local order is
not icosahedral are defects. The Frank–Kasper lines connect these defects. On the other
hand, a perfect icosahedral order can exist only in a positively curved space [13]; therefore
the defects needed to balance the curvature should introduce a concentration of negative
curvature, which is a property of disclinations. In fact, using this terminology, Frank–
Kasper lines are disclination lines appearing on bonds shared by six tetrahedra instead of
five for the perfect icosahedral order. By definition, Frank–Kasper structures contain only
this kind of disclination, but other structures can contain other types of disclination—for
example, when a tetrahedron edge is common to four or three tetrahedra. Upon heating we
will encounter such defects.
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The geometry and the topology of disclinations lines are governed by conservation rules.
In fact these lines behave as if they have a line tension proportional to their angular deficit
δe = 2π − eαt , wheree is the number of tetrahedra sharing an edge, andαt = cos−1(1/3)
is the tetrahedron dihedral angle.

Frank–Kasper lines are a nice example of this behaviour. In the A15 structure, all lines,
which never intersect, are straight lines. In Friauf–Laves phases, four segments ending on a
node have a highly symmetric configuration. When positive and negative disclinations are
mixed, they have to respect such rules; some examples are described below for disclination
lines appearing upon heating. It is worth mentioning that in the geometrical approach, a
non-pentagonal face of the Voronoı̈–Delaunay decomposition corresponds to a ‘defect’, and
the corresponding face encircles then a segment of ‘disclination line’.

There is also a balance for the space curvature. In order to consider this problem it is
helpful to suppose that the structure is not lying in a flat space but in a corrugated one,
flat only on average. Curvature concentrations are then located on tetrahedron edges, and
they are positive for edges shared by three, four, or five tetrahedra, and negative for edges
shared by six or more. In three dimensions there is no exact relation between thefes
resulting from the global vanishing curvature. Nevertheless there exists an approximate
relation

∑
e δefe ' 0 [14]. This gives, if we consider that there are only pentagonal and

hexagonal faces for Voronoı̈ cells, f5 = 0.8958 andf6 = 0.1041. In the Frank–Kasper
structures studied here,f5 andf6 are close to these values.

Figure 1. (a) The temperature evolution of thefes for β-W: 5: e = 3; ♦: e = 4; •: e = 5;
�: e = 6; 4: e = 7. (b) As (a), but for MgCu2

3. Results and discussion

3.1. Results

The aim of our study is to follow during the heating process the evolution of the local
structure. Therefore we report in figure 1 the variation of thefes as a function of temperature
(once the system has reached equilibrium) for theβ-W structure (figure 1(a)) and the MgCu2

structure (figure 1(b)). As expected for a solid–liquid transition, at the transition point
the physical parameters are discontinuous, which is typical of a first-order transition. In
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Figure 2. Disclination lines forβ-W: (a) T = 3.5 K, (b) T = 13.4 K, (c) T = 13.7 K; and
disclination lines for MgCu2: (d) T = 1.9 K, (e) T = 8.5 K, (f ) T = 8.1 K.

particular a sharp drop inf5 can be observed atTm ≈ 13.5 K (β-W) and Tm ≈ 8.0 K
(MgCu2), indicating the passage from solid to liquid behaviour. It is worth mentioning that
these curves are basically unchanged when for example a faster annealing rate is used (1013

K s−1). This indicates that these curves are indeed equilibrium curves. The breakdown
of f5 towards the liquid value of about 0.4 (and the corresponding increase of all of the
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other fes) happens for both structures whenf5 ≈ 0.7, which indicates that the breaking
mechanisms of the icosahedral order are probably similar.

Note that in figure 1(b) the temperature (8.1 K) of the first liquid configuration is
slightly lower than that (8.5 K) of the last solid configuration. This is a consequence of our
simulations being done in a microcanonical ensemble and not in a canonical one.

To get a better idea of what really happens to the structure as the temperature is increased,
we report in figure 2 the 2D projection of the network of disclination lines connecting
‘hexagonal’ faces (these are the only lines present at low temperature) at three representative
temperatures for the two structures (figures 2(a)–2(c):β-W; figures 2(d)–2(f ): MgCu2). In
figures 2(a) and 2(d) we show a snapshot of the network at the temperature for which the
first defect appears. These defects look very similar even though the two structures are
quite different, and we will discuss this point in the following section. In figures 2(b) and
2(e) we show the disclination lines just before the melting transition, while in figures 2(c)
and 2(f ) the lines are shown just after the transition. It is striking that in the solid phase,
even though the disorder is quite important, the underlying periodic network of disclination
lines is still present and visible, while in the liquid phase it has completely disappeared.

3.2. Discussion

The first defects observed in the two cases (figures 2(a) and 2(d)) are of the same kind, and
can be discussed as follows.

Figure 3. The initial defect mechanism (schematic):•: +1 edge;◦: −1 edge.

Let us consider two simplicial tetrahedra (A1A2A3A4 and A1A2A3A5; see figure 3)
sharing a common triangular face (A1A2A3). If the distance (A4A5) between the non-
common atoms becomes sufficiently small (so that one enters the circumspherical sphere
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Figure 4. The quantityc =∑e feδe decreases with temperature, but remains close to zero. This
evolution follows the decrease of the icosahedral order, with a jump at the melting temperature.
The behaviour is similar for the two structures (Frank–Kasper (a) and Friauf–Laves (b)), except
that positive values occur at low temperatures for the Friauf–Laves structure, related to the high
connectivity of the disclination network.

Figure 5. The evolution off3 (•) and(z− z0)/z (◦) as functions of the temperature: (a)β-W
(z0 = 13.5); (b) MgCu2 (z0 = 13.33).

of the other tetrahedron), they become nearest neighbours, and a new Voronoı̈ cell face is
created. The two initial simplicial tetrahedra are replaced by three new tetrahedra sharing
a common edge (A1A2A4A5, A2A3A4A5, and A3A1A4A5). Subsequently the new face
becomes a triangle formed by the centres of the spheres circumscribed to these tetrahedra.
The change in the topology of the Voronoı̈ cells is summarized at the bottom of figure 3,
where only the edges of the cells are sketched. As a consequence, the three faces associated
with the bonds A1A2, A2A3, and A3A1 lose one edge, while the six faces associated with
the bonds A4A1, A4A2, A4A3, A5A1, A5A2, and A5A3 gain one edge. In the A15 case,
we observe that the two initial simplicial tetrahedra corresponding to the first defect to
appear are such that A4 and A5 are at the centre and on a vertex of the cubic unit cell.
This is not surprising since the distance A4A5 is the lowest distance not present in the
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simplicial cell edges at zero temperature. Consequently, all of the faces concerned in the
first defect are pentagons, so, together with the new triangle, three squares and six hexagons
are created, while nine pentagons disappear. In the cubic Friauf–Laves case, we observe
that the two initial simplicial tetrahedra are such that two of the three sites A2, A3, and A4—
for example A2 and A3—are Z16 sites, while A1, A4, and A5 are Z12 sites. Consequently,
one face (bisecting A2A3) is a hexagon, while all of the others are pentagons; therefore,
globally, in addition to the triangle, two squares and five hexagons are created while seven
pentagons disappear. In figures 2(a) and 2(d) one sees the 2D projection of the new sixfold
bonds (indicated with black dots in figure 3) together with the original array of disclination
lines.

In figure 4 we have monitored the quantityc = ∑
e feδe. Note that, using the

relation 〈e〉 = (6z − 12)/z [15], it is related to the mean coordination numberz by
c = 2π − αt(6z − 12)/z. As indicated above, this quantity is not a topological invariant,
but remains close to zero. Its departure from zero is a measure of the disorder: it has
been shown [14, 16] that a high connectivity of the disclination network increasesc, while
asymmetry of the Voronoı̈ cells, or positive disclinations, decreasec. The increase of the
thermal disorder caused by heating, as well as the passage from solid to liquid, contribute
to lowering the value ofc.

It is interesting to note that, since all of the faces were initially only pentagons and
hexagons, all of the defects can be detected by counting the number of triangular faces
present in the system, at least if the temperature is kept sufficiently low that these defects
do not start to interact. Since one new bond is created per defect, the increase ofz,
1z = z− z0, should be equal to the number of triangular faces per atom, which iszf3; that
is

z − z0

z
= f3. (2)

In figure 5 we show that this relation is fulfilled at low temperature as long as the defects do
not interact. Note that the creation (annihilation) process of these defects is a quite natural
extension of the so-called T1 transformation previously introduced in two dimensions (here
there is no analogy of the T2 transformation, as there is a natural conservation of the number
of cells) [17]. This has shed new light on the importance of small triangular faces as a
measure of disorder in three-dimensional structures.

Finally, close to the melting temperature, not only do these defects interact, but certainly
other kinds of defect start to exist. It is interesting to consider what happens upon cooling.
If the melt is cooled, as usual with this potential a glassy structure is obtained, but if the
structure just below the melting temperature is cooled, the perfect structure is recovered. A
few traces of the initial disclination network are sufficient for rebuilding the structure.

4. Conclusions

We have presented and discussed the results of a detailed molecular dynamics investigation
of the evolution of the local structure as a function of temperature for two Frank–Kasper
model systems. With use of the Voronoı̈ tessellation we have shown that for the two
systems—theβ-tungsten and the MgCu2 structure—the initial defects induced by raising
the temperature are similar, and that the change is comparable to a T1 transformation.
Moreover the results show that the disclination line network survives in the solid phase up
to the solid–liquid transition temperature.

This study combines for the first time the dynamics and geometrical analysis, and gives
more insight into the evolution of the local structure from the crystal to the liquid phase. The
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understanding of glasses, in terms of the dynamics and the geometry, is a natural extension
of this work.
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